Automatic Detection of Online Jihadist Hate Speech
Comments are closed.
We have developed a system that automatically detects online jihadist hate speech with over 80% accuracy, by using techniques from Natural Language Processing and Machine Learning. The system is trained on a corpus of 45,000 subversive Twitter messages collected from October 2014 to December 2016. We present a qualitative and quantitative analysis of the jihadist rhetoric in the corpus, examine the network of Twitter users, outline the technical procedure used to train the system, and discuss examples of use.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.